Exploring a Two-Population Genetic Algorithm

نویسندگان

  • Steven Orla Kimbrough
  • Ming Lu
  • David Harlan Wood
  • Dong-Jun Wu
چکیده

In a two-market genetic algorithm applied to a constrained optimization problem, two ‘markets’ are maintained. One market establishes fitness in terms of the objective function only; the other market measures fitness in terms of the problem constraints only. Previous work on knapsack problems has shown promise for the two-market approach. In this paper we: (1) extend the investigation of two-market GAs to nonlinear optimization, (2) introduce a new, two-population variant on the two-market idea, and (3) report on experiments with the two-population, two-market GA that help explain how and why it works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...

متن کامل

Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...

متن کامل

The Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis

Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...

متن کامل

Exploring the Evolutionary Details of a Two-Population Genetic Algorithm

A two-population Genetic Algorithm for constrained optimization is exercised and analyzed. One population consists of feasible candidate solutions evolving toward optimality. Their infeasible but promising offspring are transferred to a second, infeasible population. Four striking features are illustrated by executing challenge problems from the literature. First, both populations evolve essent...

متن کامل

Exploring the Evolutionary Details of a Feasible-Infeasible Two-Population GA

A two-population Genetic Algorithm for constrained optimization is exercised and analyzed. One population consists of feasible candidate solutions evolving toward optimality. Their infeasible but promising offspring are transferred to a second, infeasible population. Four striking features are illustrated by executing challenge problems from the literature. First, both populations evolve essent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003